
Coding on Copilot
2023 Data Shows Downward Pressure on
Code Quality

150m lines of analyzed code + projections for 2024

William Harding, Lead Researcher & CEO
Alloy.dev Research

Matthew Kloster, CTO
GitClear

Published January 16, 2024

Abstract
2023 marked the coming out party for GitHub Copilot. In less than two
years’ time, the AI programming assistant shot from “prototype” to
“cornerstone,” used by millions of developers across hundreds of
thousands of businesses [1]. Its unprecedented growth defines a new era
in “how code gets written.”

GitHub has published several pieces of research on the growth and impact
of AI on software development. Among their findings is that developers
write code “55% faster” when using Copilot. This profusion of
LLM-generated code begs the question: how does the code quality and
maintainability compare to what would have been written by a human? Is
it more similar to the careful, refined contributions of a Senior Developer, or
more akin to the disjointed work of a short-term contractor?

To investigate, GitClear collected 153 million changed lines of code,
authored between January 2020 and December 2023 [A1]. This is the
largest known database of highly structured code change data that has
been used to evaluate code quality differences [A2].

We find disconcerting trends for maintainability. Code churn -- the
percentage of lines that are reverted or updated less than two weeks after
being authored -- is projected to double in 2024 compared to its 2021,
pre-AI baseline. We further find that the percentage of "added code" and
"copy/pasted code" is increasing in proportion to “updated,” “deleted,” and
“moved” code. In this regard, code generated during 2023 more resembles
an itinerant contributor, prone to violate the DRY-ness of the repos visited.

We conclude with suggestions for managers seeking to maintain high code
quality in spite of the momentum opposing that goal.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Table of Contents

1.GitHub: "55% faster coding. 46% more code written. $1.5

trillion added to GDP"

2.The Problem with AI-Generated Code

3.Code Change Definitions

4.Trends in Commit Line Operations

5. Interpreting Code Operation Changes

6.Burgeoning Churn

7.Less Moved Code Implies Less Refactoring

8.More Copy/Pasted Code Implies Future Headaches

9.Trends in Revised Code Age

10. Interpreting Code Age Trends

11. Questions for Follow Up Research

12. Conclusion: Developers Wary for a Reason?

13. Citations

14. Appendix

GitHub: "55% faster coding. 46%more
code written. $1.5 trillion added to GDP"

With numbers like these, little wonder that GitHub's own CEO, Thomas Dohmke, has
been taking time from his usual CEO duties to write about the AI revolution. A blog
post and research paper he published on GitHub in 2023 tell a heady story about the
rapid proliferation of Copilot.

From Dohmke's 2023 blog post, "The economic impact of the AI-powered developer lifecycle and
lessons from GitHub Copilot"

In the same post, Dohmke asserts that more than 20,000 organizations are already
using GitHub Copilot for Business. This follows GitHub’s announcement from
February 2023 that "more than one million people" were already using Copilot on a
Personal license when Copilot for Business was released. GitHub has been making
commendable progress on both advancing AI quality, and on being transparent about
the result of their efforts.

What is the total percentage of developers using AI to author code? In a separate
study that GitHub undertook with Wakefield Research in June 2023, they assert that
“92% of U.S.-based developers working in large companies report using an AI coding
tool.” They go on to claim that 70% of developers say they see significant benefits to
using AI. Still, an August 2023 survey by O’Reilly Publishing found that 67% of

https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
https://arxiv.org/abs/2306.15033
https://github.blog/2023-02-14-github-copilot-for-business-is-now-available
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://www.oreilly.com/radar/the-next-generation-of-developer-productivity/

surveyed developers claimed they weren’t yet using ChatGPT or Copilot. This
suggests that GitHub still has potential for significant market capture.

The Problemwith AI-Generated Code
Developers wouldn't be adopting Copilot if they didn't believe that it accelerated their
ability to produce code. GitHub's research finding on this point says "developers are
75% more fulfilled when using Copilot." To a first approximation, developers embrace
the product. This doesn’t reveal whether their near-term satisfaction will be shared by
those who go on to maintain the code. Initial impressions from longtime code
researcher Adam Tornhill (author, Your Code as a Crime Scene) are skeptical:

Developer researchers are concerned by the impact of AI assisted programming

GitHub claims that code is written "55% faster" with Copilot. But what about code that
shouldn't be written in the first place? The problem here is that code spends 10x more
time being read than being written, according to Robert Martin, author of Clean Code:
A Handbook of Agile Software Craftsmanship. Writing bad code faster implies
considerable pains for the subsequent code readers.

That is the first of many challenges facing developers who use an AI assistant. Others
include:

1. Being inundated with suggestions for added code, but never suggestions
for updating, moving, or deleting code. This is a user interface limitation of
the text-based environments where code authoring occurs.

2. Time required to evaluate code suggestions can become costly. Especially
when the developer works in an environment with multiple, competing
auto-suggest mechanisms (this includes the popular JetBrains IDEs [11])

3. Code suggestion is not optimized by the same incentives as code
maintainers. Code suggestion algorithms are incentivized to propose
suggestions most likely to be accepted. Code maintainers are incentivized to
minimize the amount of code that needs to be read (I.e., to understand how to
adapt an existing system).

These drawbacks may explain the difference between the greater tendency of Junior
Developers to accept code suggestions compared to their more experienced
counterparts. According to GitHub’s research:

GitHub's own data suggests that Junior Developers use Copilot around 20% more than experienced
developers

Experienced developers have the most informed understanding of how costly code
will be to maintain over time. If they are more averse to using AI suggestions, it raises
questions about the extra code that Junior developers are now contributing, faster
than ever?

Code Change Definitions
To analyze how code quality is changing, we will review the differences in types of
code changes observed in 2023 vs. the years prior, when AI was much less prevalent.
GitClear classifies code changes (operations) into seven categories. The first six
operations are analyzed in this research:

1. Added code. Newly committed lines of code that are distinct, excluding lines
that incrementally change an existing line (labeled "Updates"). "Added code"
also does not include lines that are added, removed, and then re-added (these
lines are labeled as "Updated" and "Churned")

2. Deleted code. Lines of code that are removed, committed, and not
subsequently re-added for at least the next two weeks.

3. Moved code. A line of code that is cut and pasted to a new file, or a new
function within the same file. By definition, the content of a "Moved" operation
doesn't change within a commit, except for (potentially) the white space that
precedes the content.

4. Updated code. A committed line of code based off an existing line of code, that
modifies the existing line of code by approximately three words or less.

5. Find/Replaced code. A pattern of code change where the same string is
removed from 3+ locations and substituted with consistent replacement content.

6. Copy/Pasted code. Identical line contents, excluding programming language
keywords (e.g., end, }), [), that are committed to multiple files or functions
within a commit.

7. No-op code. Trivial code changes, such as changes to white space, or changes
in line number within the same code block. No-op code is excluded from this
research.

Specific examples of GitClear's code operations can be found in the Diff Delta
documentation. GitClear has been classifying git repos by these operations since
2020. As of January 2024, GitClear has analyzed and classified around a billion lines
of code over four years, from a mixture of commercial customers (e.g., NextGen
Health, Verizon) and popular open source repos (e.g., Facebook React, Google
Chrome). 153 million lines of code were meaningful (not No-op) line changes, used for
this research.

Along with the evolution of code change operations, we are also exploring the change
in "Churned code." This is not treated as a code operation, because a churned line

https://docs.google.com/presentation/d/1_zHZSSU5GsuORb776sRVNkuKoHXS7e2smJWWkn1Kxds/edit#slide=id.g9a6371a948_0_139
https://docs.google.com/presentation/d/1_zHZSSU5GsuORb776sRVNkuKoHXS7e2smJWWkn1Kxds/edit#slide=id.g9a6371a948_0_732
https://docs.google.com/presentation/d/1_zHZSSU5GsuORb776sRVNkuKoHXS7e2smJWWkn1Kxds/edit#slide=id.g9a6371a948_0_732

can be paired with many operations, including "Added," "Deleted," or "Updated" code.
For a line to qualify as "churned," it must have been authored, pushed to the git repo,
and then reverted or substantially revised within the subsequent two weeks. Churn is
best understood as "changes that were either incomplete or erroneous when the
author initially wrote, committed, and pushed them to the company’s git repo."

Trends in Commit Line Operations
To understand how Copilot has changed code quality, we analyzed the number of
different line operations that GitClear has observed, segmented by the year in which
the code was authored (using the authored_at date within the git commit header
[12]). The raw numbers for this analysis are included in the Appendix. Here are the
percentages by year:

Added Deleted Updated Moved Copy/pasted Find/replaced Churn

2020 39.2% 19.5% 5.2% 25.0% 8.3% 2.9% 3.3%

2021 39.5% 19.0% 5.0% 24.8% 8.4% 3.4% 3.6%

2022 41.0% 20.2% 5.2% 20.5% 9.4% 3.7% 4.0%

2023 42.3% 21.1% 5.5% 16.9% 10.5% 3.6% 5.5%

2024 43.6% 22.1% 5.8% 13.4% 11.6% 3.6% 7.1%

Here are how these look in graph form, where the left axis illustrates the prevalence of
code change operations (which, as percentages, sum to 1). The right axis and light
blue line track the corresponding change in "Churn" code:

The projections for 2024 utilize OpenAI's gpt-4-1106-preview Assistant to run a
quadratic regression on existing data. The full method used to interrogate the OpenAI
Assistant is provided in the Appendix. Given the exponential growth of Copilot
reported by GitHub, and AI Assistants in general, it seems likely that 2024's numbers
will continue the trends that began to take form in 2022 and accelerated in 2023.
Looking only at the differences in operation frequency between 2022 and 2023, we
find three red flags for code quality:

Operation YoY change

Added +3.1%

Deleted +4.8%

Updated +5.2%

Moved -17.3%

Copy/Pasted +11.3%

Find/Replaced -1.3%

Churn +39.2%

Interpreting Code Operation Changes
The most significant changes observed in 2023 are to "Churn," "Moved," and
"Copy/Pasted" code. The implications for each change are reviewed in this section.

Burgeoning Churn
Recall that "Churn" is the percentage of code that was pushed to the repo, then
subsequently reverted, removed or updated within 2 weeks. This was a relatively
infrequent outcome when developers authored all their own code -- only 3-4% of code
was churned prior to 2023, although there is also a hint of the coming uptick in 2022,
when Churn jumped 9%. 2022 was the first year Copilot was available in beta, and the
year that ChatGPT became available.

In 2022-2023, the rise of AI Assistants are strongly correlated with "mistake code"
being pushed to the repo. If we assume that Copilot prevalence was 0% in 2021,
5-10% in 2022 and 30% in 2023 (corresponding to citations [1] and [8]), the Pearson
correlation coefficient between these variables is 0.98 (see “Correlation between
Churn & Copilot” in Appendix for more details on calculation). Which is to say, that
they have grown in tandem.

The more Churn becomes commonplace, the greater the risk of mistakes being
deployed to production. If the current pattern continues into 2024, more than 7% of all
code changes will be reverted within two weeks, double the rate of 2021. Based on
this data, we expect to see an increase in Google DORA's "Change Failure Rate"
when the “2024 State of Devops” report is released later in the year, contingent on
that research using data from AI-assisted developers in 2023.

Less Moved Code Implies Less Refactoring, Less Reuse
Moved code is typically observed when refactoring an existing code system.
Refactored systems in general, and moved code in particular, underpin code reuse.
As a product grows in scope, developers traditionally rearrange existing code into new
modules and files that can be reused by new features. The benefits of code reuse are
familiar to experienced developers – compared with newly added code, reused code
has already been tested & proven stable in production. Often, reused code has been
touched by multiple developers, so is more likely to include documentation. This
accelerates the interpretation of the module by developers who are new to it.

Combined with the growth in code labeled "Copy/Pasted," there is little room to doubt
that the current implementation of AI Assistants discourages code reuse. Instead of
refactoring and working to DRY ("Don't Repeat Yourself") code, these Assistants offer
a one-keystroke temptation to repeat existing code.

More Copy/Pasted Code Implies Future Headaches
There is perhaps no greater scourge to long-term code maintainability than
copy/pasted code. To an extent, when a non-keyword line of code is repeated, the
code author is admitting "I didn't have the time to evaluate the previous
implementation." By re-adding code (vs. reusing it), the chore is left to future
maintainers to figure out how to consolidate parallel code paths that implement
repeatedly-needed functionality.

Since most developers derive greater satisfaction from "implementing new features"
than they do "interpreting potentially reusable code," copy/pasted code often persists
long past its expiration date. Especially on less experienced teams, there may be no
code maintainer with the “moral authority” to remove the duplicative code. Even when
there are Senior Developers possessing such authority, the willpower cost of
understanding code well enough to delete it is hard to overstate.

If there isn't a CTO or VP of Engineering who actively schedules time to reduce tech
debt, you can add "executive-driven time pressures" to the list of reasons that newly
added copy/paste code will never be consolidated into the component libraries that
underpin long-term development velocity.

Since GitClear operations only include code that is duplicated within a single commit,
it is likely that the 11% copy/paste measured in 2023 is only a fraction of the total
pasting being quietly seeded into repos during 2024.

Trends in Revised Code Age
A second, independent means to assess how code quality has changed in 2023 vs.
before is to analyze the data from GitClear's Code Provenance derivation. A “Code
Provenance” assessment evaluates the length of time that passes between when
code is authored, and when it is subsequently updated or deleted.

Less than 2
weeks

Less than one
month

Less than one
year

1-2 years

2020 65.9% 8.7% 21.8% 3.6%

2021 66.7% 9.0% 20.5% 3.8%

2022 64.7% 9.9% 21.1% 4.4%

2023 71.3% 9.3% 16.4% 3.0%

2024 74.4% 9.1% 14.1% 2.4%

The corresponding raw numbers are in the Appendix. Graphing the data, we find:

https://www.gitclear.com/help/technical/code_provenance

Interpreting Code Age Trends
Code Provenance data corroborates the patterns observed in the Code Operation
analysis. The age of the code when it is replaced has shifted much younger from 2022
to 2023. Specifically, code replaced in less than two weeks has jumped by 10%.
Meanwhile, code older than one month was changed 24% less frequently in 2023 vs
2022 (19.4% of all changes vs. 25.5% previously).

The trend implies that, prior to AI Assistants, developers may have been more likely to
find recently authored code in their repo to target for refinement and reuse. Around
70% of products built in the early 2020s use the Agile Methodology, per a Techreport
survey [5]. In Agile, features are typically planned and executed per-Sprint. A typical
Sprint lasts 2-3 weeks. It aligns with the data to surmise that teams circa 2020 were
more likely to convene post-Sprint, to discuss what was recently implemented and
how to reuse it in a proximal Sprint.

Questions for Follow Up Research
Can incentives be created to counteract the "add it and forget it" tab-based invocation
that pervades code suggestion engines of 2024?

While AI could be trained to identify code consolidation opportunities, when would it
be invoked? An alternative UI would be needed to review code deletions and updates,
alongside prospective additions. Furthermore, the same executive pressures that
prevent teams from scheduling time to reduce tech debt today would probably prevent
them from adopting a hypothetical “code cleanup” tool. Still, if the creator of a Code
Assistant is interested in exploring how to consolidate code, GitClear would like to
work with them. Our contact information is in the Appendix.

Another salient question in light of this data: at what rate does development progress
become inhibited by additional code? Especially when it comes to copy/pasted code,
there is almost certainly an inverse correlation between "the number of lines of code in
a repo" and "the velocity at which developers can modify those lines." The current
uncertainty is "when is the accumulated copy/paste tech debt too great to ignore?"
Knowing the rate at which slowdown takes hold would allow future tools to highlight
when a manager should consider cutting back time on new features.

A final question worthy of exploration: what is the total percentage of copy/pasted
code that is now occurring, compared to 2020-2022? Since GitClear currently
measures only copy/paste code within the context of an individual commit, it seems
likely that the total copy/paste volume (all non-keyword, non-comment lines of code
repeated within a file) might be double what GitClear currently measures. Could
copy/paste really represent 20-25% of all code operations in 2024?

GitClear will look to address these questions in future research, and we encourage
other researchers in the field to contribute their data. If you would like to partner with
GitClear to undertake further research, our contact information is in the Appendix.

Conclusion: Devs Wary for a Reason?
By both data points we evaluated, negative pressures on code quality were present in
2023. This correlates with the proliferation of LLMs in general, and AI Code Assistants
in particular.

Developer assessments, like GitHub's 2023 survey with Wakefield Research, hint that
developers already perceive the decrease in code quality. When asked "What metrics
should you be evaluated on, absent AI," their top response was "Collaboration and
Communication," followed by "Code Quality" in second place.

When the question switched to "What metrics should you be evaluated on, when
actively using AI?" their responses shifted, with "Code Quality" now the top concern,
and "Number of Production Incidents" rising to the #3 concern:

From GitHub's Survey on AI Impact

While individual developers lack the data to substantiate why "Code Quality" and
"Production Incidents" become more pressing concerns with AI, our data suggests a

https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/

possible backstory: When developers are inundated with quick and easy suggestions
that will work in the short term, it becomes a constant temptation to add more lines of
code without really checking whether an existing system could be refined for reuse.

To the extent that inexperienced developers continue to be offered implicit copy/paste
suggestions via the tab key, the fix for this situation won't be easy. It is beholden on
engineering leaders to monitor incoming data and consider its implications for future
product maintenance. Developer Analytics tools, including GitClear, can help detect
the rate at which problematic code is being seeded. Specific questions to evaluate:

1. Is the percentage of code reuse falling?
2. Are there changes in how much code is moved and copy/pasted?
3. Is it easy for developers to discover code reuse opportunities?

Further discussion on how GitClear can address these questions [A3].

How will AI Assistants and Copilot transform what it means to be a developer? There's
no question that, as AI has proliferated, we have entered an era where code lines are
added faster than ever. The better question for 2024: who's on the hook to clean up
what’s left afterward?

Citations
1. The economic impact of the AI-powered developer lifecycle

and lessons from GitHub Copilot [GitHub]

2. GitHub Copilot for Business is now available [GitHub]

3. Sea Change in Software Development: Economic and
Productivity Analysis of the AI-Powered Developer Lifecycle
[GitHub]

4. Diff Delta and Commit Groups [GitClear]

5. Techreport survey: 71% of teams use Agile [Techreport]

6. What is "code provenance" and why does it matter? [GitClear]

7. Survey reveals AI’s impact on the developer experience
[GitHub]

8. The next generation of developer productivity [O’reilly]

9. Your Code as a Crime Scene [Pragmatic Programmers]

10. Clean Code: A Handbook of Agile Software Craftsmanship
and specific quote cited [Robert C. Martin, author]

11. JetBrains AI: Supercharge your tools. Embrace new freedom
[JetBrains]

12. https://git-scm.com/docs/git-commit [Git docs]

13. Using the Tech Debt Browser [GitClear]

14. Don’t repeat yourself [Wikipedia]

15. X: Tweet from Adam Tornhill [X/Twitter]

https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
https://github.blog/2023-06-27-the-economic-impact-of-the-ai-powered-developer-lifecycle-and-lessons-from-github-copilot/
https://github.blog/2023-02-14-github-copilot-for-business-is-now-available/
https://arxiv.org/abs/2306.15033
https://arxiv.org/abs/2306.15033
https://docs.google.com/presentation/d/1_zHZSSU5GsuORb776sRVNkuKoHXS7e2smJWWkn1Kxds/edit#slide=id.g9a6371a948_0_732
https://techreport.com/statistics/how-many-companies-use-agile/
https://www.gitclear.com/help/technical/code_provenance
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
https://www.oreilly.com/radar/the-next-generation-of-developer-productivity/
https://pragprog.com/titles/atcrime2/your-code-as-a-crime-scene-second-edition/
https://www.goodreads.com/book/show/3735293-clean-code
https://www.goodreads.com/quotes/835238-indeed-the-ratio-of-time-spent-reading-versus-writing-is#:~:text=Indeed%2C%20the%20ratio%20of%20time%20spent%20reading%20versus%20writing%20is,makes%20it%20easier%20to%20write.
https://www.jetbrains.com/ai/
https://git-scm.com/docs/git-commit
https://www.gitclear.com/help/tech_debt_inspector_list_directories_by_developer_velocity
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://twitter.com/AdamTornhill/status/1729592297887502611

Appendix
Data used to build this research is included below.

A1: Raw data for changed line counts

Added Deleted Updated Moved Copy
/pasted

Find/
replaced

Lines
changed

Churn

2020 9,071,731 4,508,098 1,202,480 5,786,718 1,911,855 676,000 23,156,882 769,493

2021 14,464,864 6,969,778 1,826,579 9,043,649 3,087,530 1,234,213 36,626,613 1,331,278

2022 16,868,378 8,280,031 2,146,768 8,407,677 3,873,240 1,512,708 41,088,802 1,630,703

2023 22,626,714 11,288,962 2,938,800 9,040,659 5,607,373 1,942,194 53,444,702 2,952,912

2024 28,708,803 14,535,353 3,803,275 8,804,121 7,599,970 2,355,662 65,800,602 4,665,263

Here were some secondary characteristics of the data set analyzed, to aid in evaluating its
validity/applicability relative to existing data sets the reader may possess:

Year Commit count Committer count Repos analyzed Code files changed

2020 381347 12761 497 1368549

2021 623264 17577 643 2207498

2022 723823 18446 993 2616263

2023 1019680 21700 1294 3414136

In CSV pasteable form, for your reanalysis convenience (2024 omitted since it is a projection you can
replace with your own):
Year,Added,Deleted,Updated,Moved,Copy/pasted,Find/replaced,Lines
changed,Churn
2020,9071731,4508098,1202480,5786718,1911855,676000,23156882,769493
2021,14464864,6969778,1826579,9043649,3087530,1234213,36626613,1331278
2022,16868378,8280031,2146768,8407677,3873240,1512708,41088802,1630703
2023,22626714,11288962,2938800,9040659,5607373,1942194,53444702,2952912

Queries used to produce data
The data was stored in a Postgres database and was queried via Ruby on Rails' ActiveRecord.
Operation by year
2020.upto(2023).map { |year| CodeLine.where(authored_at: Time.new(year, 1,
1)..Time.new(year + 1, 1, 1), commit_impacting:
true).group(:operation_em).count }
Commits by year
Commit.impacting.where(authored_at:
Time.local(2020,1,1)..Time.local(2024,1,1)).group("EXTRACT (year from
authored_at)").count
Committers committing by year
2020.upto(2023).map { |year|
Committer.joins(:commits).merge(Commit.impacting).where(commits: {
authored_at: Time.local(year,1,1)..Time.local(year+1,1,1)
}).group(:id).count.size }
Repos changed by year
2020.upto(2023).map { |year|
Repo.joins(:commits).merge(Commit.impacting).where(commits: { authored_at:
Time.local(year,1,1)..Time.local(year+1,1,1) }).group(:id).count.size }
Files by year
2020.upto(2023).map { |year|
CommitCodeFile.impacting.joins(:commit).where(commits: { authored_at:
Time.local(year,1,1)..Time.local(year+1,1,1) }).group(:id).count.size }

A2: Largest known database of structured code data
As of January 2024, there is no publicly available dataset that indexes code changes. Published data
on code stats originates only from the handful of companies that hold or evaluate code data. Among
these companies, including GitHub, GitLab, Bitbucket, Azure Devops, GitKraken, and SonarQube, all
classify code changes as a binary “add” or “delete” [example]. GitClear is the only company thus far
that recognizes a broader set of operations:

1. Added code
2. Updated code
3. Deleted code
4. Copy/pasted code
5. Find/replaced code
6. Moved code
7. No-op code

GitClear’s data is split about two-thirds private corporations that have opted in to anonymized data
sharing, and one-third open source projects (mostly those run by Google, Facebook, and Microsoft).

https://docs.google.com/presentation/d/1_zHZSSU5GsuORb776sRVNkuKoHXS7e2smJWWkn1Kxds/edit#slide=id.g9a6371a948_0_698

In addition to the code operation data, GitClear’s data set also segments and excludes lines if they
exist within auto-generated files, subrepo commits, and other exclusionary criteria enumerated in this
documentation. As of January 2024, that documentation suggests that a little less than half of the
“lines changed” by a conventional git stats aggregator (e.g., GitHub) would qualify for analysis among
the 150m lines in this study. The study does include commented lines – future research could
compare comment vs. non-comment lines. It could also compare “test code” vs “other types of code,”
which probably influences the levels of copy/paste.

If you know of other companies that report code operations of comparable granularity, please contact
hello@gitclear.com and this section will be updated, and a new PDF document will be uploaded with
credit given to the contributor (if desired).

A3: GitClear solutions

GitClear offers reports that answer all three questions (operations recognized, operation report,
provenance report). It also offers a Tech Debt browser, and the ability to enable email notifications
when quality is on the downward slope.

Raw data for revised line counts
Year Less than 2 weeks Less than one

month
Less than one

year
1-2 years

2020 550362 72471 182420 30074

2021 891008 120029 274125 50825

2022 1136604 173370 369925 77463

2023 1941351 254082 445869 82405

In CSV pasteable form, for your own reanalysis convenience:
Year,Less than 2 weeks,Less than one month,Less than one year,1-2 years,Sum
2020,550362,72471,182420,30074,835327
2021,891008,120029,274125,50825,1335987
2022,1136604,173370,369925,77463,1757362
2023,1941351,254082,445869,82405,2723707

Queries used to produce data
The data was stored in a Postgres database and was queried via Ruby on Rails' ActiveRecord.
ruby

https://www.gitclear.com/lines_of_code_stats
https://www.gitclear.com/lines_of_code_stats
mailto:hello@gitclear.com
https://www.gitclear.com/help/technical/diff_delta_calculation
https://www.gitclear.com/help/historical_activity_stats#Code_Breakdown_Graphs
https://www.gitclear.com/help/technical/code_provenance
https://www.gitclear.com/help/tech_debt_inspector_list_directories_by_developer_velocity

Revision (provenance) query
2020.upto(2023).map { |year| CodeLine.where(authored_at: Time.new(year, 1,
1)..Time.new(year + 1, 1, 1), commit_impacting:
true).group(:provenance_em).count }

OpenAI Assistant Data Projection

Correlation between Churn and estimated Copilot prevalence

The first year is 2020, the last year is 2023. The estimate of 30% is taken from the independent
O’Reilly Publishing survey in citation [8], stating that less than a third of developers claim to currently
use Copilot or ChatGPT for coding as of August 2023. The 10% estimate is based on GitHub’s blog
post in [1] stating that Copilot launched a year earlier, and had grown to include “millions of
developers.” If we guess that the prevalence of Copilot was only 5% in 2022, there is no significant
change to the Pearson coefficient.

Updates

● Improved clarity and consonance of data with language. Add ContactJan 26, 2024
Information.

Contact information
If you would like to discuss this research, or have ideas on how to improve it, please contact
hello@gitclear.com or bill@gitclear.com directly. We are happy to consider improvements to the clarity
of this writing, or to explain how GitClear can help teams measure the metrics explored by this
research.

mailto:hello@gitclear.com
mailto:bill@gitclear.com

