
LineImpacts 1

Diff Delta
And how fusing commits together 
reduces tech debt & code review time

A visual guide to 



GitClear provides an engineering insights tool built to create incentives to 
reduce tech debt and ship faster. We do it by identifying the rate at which 
code evolves: per-developer, per-directory, and per-team.

We want developers to enjoy reviewing code -- like it’s a good book. By making 
code easier to read, we help them reduce (or even prevent) the tech debt that 
saps developer enthusiasm on so many large projects.

GitClear went live to customers in 2019 and has been used by hundreds of 
teams to improve their code quality & velocity.

Watch a 3 minute GitClear explainer video.

https://www.youtube.com/watch?v=AQdI74kyEMA


The Average Git Repo in 2021

A development team might have 100+ commits made across their git 
repos every day. Nobody can keep track of everything. The average 
repo in 2021 is a black box that periodically kicks out PRs when it’s 
working right.

At best, a couple developers know how the big picture connects.



Critical Moments Lost in the Jumble

A new bug is being introduced 

A developer is refactoring legacy code that will prevent tremendous headaches down the road

A junior developer is creating tech debt by duplicating an existing utility function

When you’re lucky, you find out about these issues before your customers do. But just as often, critical 
moments happen and nobody knows about it until weeks or months later, if at all.

Somewhere in this commit jumble...



Certainly not in the commit list

Where Do We Look for Critical Commits?

You’re not going to catch critical moments in a flat list of hundreds of commits, separated by 
repo. Nobody in their right mind will use this to browse commit activity.



Not in PRs

Where Do We Look for Critical Commits?

PRs are supposed to clean up the mess that 
happens in development, but you’ve seen how 
that goes...

● The change is too overwhelming. 
Unless your team always keeps its PRs 
below 20 commits, they become 
overwhelming and are glossed over

● Bugs and tech debt abound by the time 
PR stage reached. Especially for new 
team members or Junior Developers, 
when weeks may pass between PRs.

● The top people don’t have time to read 
them. Senior Architects are too busy to 
read PRs. If it’s small, expect a quick 
glance. If it’s more than 20 commits, you 
don’t want to know...

● On small teams, much work happens 
outside of the PR process. Such work 
usually gets reviewed by no one.



GitClear Opening the “Repo Black Box”

Let’s zoom into a single commit to see how GitClear’s rich commit parsing engine uses Diff 
Delta to simplify even the most intricate commit activity



The Old Way: Binary Diff

By treating every change as either an “add” or “delete,” other git tools put the onus on code reviewers to piece together 
the real story. Is an apparent block of "added code" is truly new, or just some legacy code moved in from another 
file? 

Since 30% of all line changes are moved code, developers could be 30% faster understanding code by using a more 
refined diff tool.

● When git tools like Github interpret a commit, they relate a list of green and red changes. Everything is binary.

Other diff viewers 
classify

every code change 
as either

File 1 File 2

or



The GitClear Way: Diff Like a Developer

File 1 File 2
Commit ABCD 

Meanwhile, GitClear 
recognizes...

RICH DIFF PARSING 
DIFFERENTIATES 

SUBSTANTIVE 
CHANGES

By classifying code using the full set of code operations that developers recognize, 
we can extract semantic meaning to differentiate between big vs trivial changes



Here are seven types of operations we recognize in commits.  Each operation is accompanied by a screenshot of how
the operation looks in the GitClear diff viewer.

Technical Details Optional In-Depth Reading

Operations Recognized by Diff Delta

Each added line of code counts for up to 10 points.

Each deleted line of code can count for up to 25 points. 
By default, Diff Delta prizes code deletion most of all, for its role in 
reducing long-term tech debt.

Moved code (about 30% of all changed lines) is assigned no Diff Delta

One of the most common types of code change is the "no-op."  This 
encompasses all changes to white space, blank lines added, and lines 
whose only change was their line number.

1 of 3



Technical Details Optional In-Depth Reading

Operations Recognized by Diff Delta

When a line changes in part, we consider this an "update." Updates can count for up to 10 points.

When a developer repeatedly adds ("pastes") the same line or block in multiple locations, 
across one or more commits. Copy/pasted code is assigned no Diff Delta for its role in creating 
tech debt.

When a developer applies the same change to several lines en masse, this is detected
as "Find & replace." Such lines are worth up to 3 points.

2 of 3



Assuming you're using one of the 40 programming languages (including every modern language), Diff Delta will know a few more tricks out of the 
box. Below, a subset of language-specific idioms we recognize.

About 10% of lines changes are language keywords: these are 
transparent to Diff Delta.

Multi-line statements have their value assigned to the first line

Comments are assigned negligible Diff Delta

“Include statements” can comprise up to 5% of 
changed lines in React repos. Diff Delta treats them 
as trivial changes.

Technical Details Optional In-Depth Reading

Language Idioms Recognized by Diff Delta 3 of 3



Diff Delta ≈ Cognitive energy to make a change 
Initial estimation phase

File 1 File 2
Commit ABCD 

Once our commit parse is complete, we assign a 
provisional score based on the estimated 
cognitive energy needed to produce the changes 
in the commit [1]. 

Scores range from 0-30 per line, with the highest 
scores reserved for updates and deletions to 
legacy code, where tech debt tends to 
accumulate and only experts dare tread. 

Changes like no-ops, moved code, and 
copy/paste get no Diff Delta. Most non-trivial 
changes get 5-10 per changed line. New code 
earns little value since it is prone to churn and 
begets maintainability costs.

[1] https://www.gitclear.com/diff_delta_factors
+100 Diff Delta
Initial Estimate



Diff Delta: Incorporating Churn
Secondary refinement phase

File 1 File 1
Commit ABCD Commit EFGH

File 2 File 2

+ 50 Diff Delta

+ 20 Diff Delta

Commit Group ABCD + EFGH 

WORK
 RENDERED
 OBSOLETE

by
Commit EFGH 

100 - 50 (obsolete)
Diff Delta

= 50  New Delta

WORK
 RENDERED
 OBSOLETE

by
Commit ABCD

 30 - 10 (obsolete)
  Diff Delta

= 20 New Delta



Line Impact: Incorporating Churn
Secondary refinement phase

To evaluate whether Diff Delta could empirically outperform other common git 
metrics, GitClear collected 2,800 data points to compare how well Diff Delta 
correlated to “developer effort.” We found “Diff Delta” correlated up to 61% in large 
repos with effort. Read what academics had to say about our research.

At right, the blue bar indicates the degree 
of correlation between Diff Delta and effort 
spend by the development team. Diff Delta 
matches effort better than conventional 
metrics “commits” or “lines of code.”

Can Diff Delta be Trusted?

https://www.gitclear.com/blog/a_researcher_s_take_on_our_research_i_am_of_the_opinion_that_you_have_clearly_demonstrated_line_impact_s_superiority


Commit Activity Browser: 2d Visual Map

GitClear rearranges the flat list of commits you’re used to into a colorful, 2d browsable map of commits
Commits are grouped by issue and condensed to hide irrelevant changes

Learn more about Commit Activity Browser

https://www.gitclear.com/help/technical/commit_activity_browser_visual_usage_guide


Commit Groups Expose Critical Moments

What Happens by Fusing Commits ABCD + EFGH?

In the real world, commits don't happen in isolation. 
Diff Delta is built to get more accurate as more 
commits are added. 

By fusing together related commits into Commit 
Groups, we cancel out noise from churn and get 
the ground truth about what precisely changed over 
the course of an issue’s implementation.

Fusing commits into commit groups is key to 
spotting bugs before they reach production.

File 1 File 1

Commit ABCD Commit EFGH

File 2 File 2



Technical Details

Making a Commit Group 

File 1
Commit Group ABCD + EFGH 

+70 Diff Delta

File 2

File 1 File 1

File 2 File 2

Commits ABCD and EFGH 

+130 Diff Delta



The Difference is (Git)Clear

Without GitClear: With GitClear:

★ Code and Jira together from first commit
★ Real-time developer status, no interruption
★ Team crafts more durable code together

- Bugs are created and nobody knows about it
- Developers interrupted to get updates
- Junior Developers repeat same mistakes



Thousands of 
startup and 
enterprise teams 
trust GitClear to 
make sense of 
their development 
activity

Don’t Take Our Word for It... Trusted By

fff



Competitive Pricing for Every Size Team Try GitClear free

https://www.gitclear.com/users/register


Bonus Content
Encore reports for overachievers



Historic Stats: Long-Term Diff Delta

Historic stats show how temporal factors impact developer output



Historic Stats: Line Impact by Team

How are various teams at the company progressing on their tasks?



Issue Stats: How Much Work Comes From Jira?

Issue stats make clear when bugs increase, or when the team is working on undocumented work



Your Team Has Experts, So Who Are They?

A customer favorite, our Domain 
Experts report uses git data to 

identify who in the company has 
the most experience writing every 
type of code across your projects.

These people can form the 
interview team if you need to hire 
more experts. They’re also prime 
candidates if you need to mentor 

aspiring Junior Developers.

Actual developer data, aggregated across 20 of the largest 
open source repos over past 12 months


