GitClear

1111111111111

lef Delta

GitClear

GitClear provides an engineering insights tool built to create incentives to
reduce tech debt and ship faster. We do it by identifying the rate at which
code evolves: per-developer, per-directory, and per-team.

We want developers to enjoy reviewing code -- like it's a good book. By making
code easier to read, we help them reduce (or even prevent) the tech debt that
saps developer enthusiasm on so many large projects.

GitClear went live to customers in 2019 and has been used by hundreds of
teams to improve their code quality & velocity.

Watch a 3 minute GitClear explainer video.

https://www.youtube.com/watch?v=AQdI74kyEMA

A development team might have 100+ commits made across their git
repos every day. Nobody can keep track of everything. The average

repo in 2021 is a black box that periodically kicks out PRs when it's
working right.

At best, a couple developers know how the big picture connects. |

Somewhere in this commit jumble...

ﬁ A new bug is being introduced
,\/ A developer is refactoring legacy code that will prevent tremendous headaches down the road
,«\%\ A junior developer is creating tech debt by duplicating an existing utility function

When you’re lucky, you find out about these issues before your customers do. But just as often, critical
moments happen and nobody knows about it until weeks or months later, if at all.

Where Do We Look for Critical Commits?

Certainly not in the commit list

You’re not going to catch critical moments in a flat list of hundreds of commits, separated by
repo. Nobody in their right mind will use this to browse commit activity.

master =
Commits on Sep 15, 2020

Fix typo s/InvalidStatement/Statementinvalid/ [ci skip]

.‘ kamipt

Maodule#const_set is a public method

Q‘ amatsuda committed 10 hour v
Commits on Sep 14, 2020

Merge pull request # rom eileencodes/ensure-connects to-is-alwa... - g
= ; s) Verified 3119742

ﬂ eileencodes co

Ensure ‘connects_to’ can only be called on base or abstract classes Vennied 5436604

ﬂ eileencodes and seejohnrun committed ay

Revert "Merge pull request # rom sikachu/silence-mysql-errno-wa... .-

. kamipo ¢

Merge pull request #: 2 from Shopify/active-record-exceptions-wrapping

® <nmip

Verified

Where Do We Look for Critical Commits?

Not in PRs

PRs are supposed to clean up the mess that
happens in development, but you’ve seen how
that goes...

e The change is too overwhelming.
Unless your team always keeps its PRs
below 20 commits, they become
overwhelming and are glossed over

e Bugs and tech debt abound by the time
PR stage reached. Especially for new
team members or Junior Developers,
when weeks may pass between PRs.

e The top people don’t have time to read
them. Senior Architects are too busy to
read PRs. If it's small, expect a quick
glance. If it's more than 20 commits, you
don’t want to know...

e On small teams, much work happens
outside of the PR process. Such work
usually gets reviewed by no one.

to)
Rails 5.2 #239 Yeah, right...

$~ Merged wbhardiWommits master from gc-18 Ais-s2) onJul7
Conversation 131 o- Commits 82 Checks 0 Files changed 245

. wbharding commented on Jul 7

Down to last couple broken tests, so will probably merge this later today. Assortment of changes include:

« Remote side effects from RemoteEndpoint.endpoint_for such that it will not instantiate a new endpoint.

RemoteEndpoint.ensure_endpoint_for will now handle that

E? wbharding added 31 commits on Jun 24

$ [GC-1807] Run rails app:update and take best pass at reconciling with..
x [GC-1807] Rename :split enum to :split_view to fix new exception base..
s‘ [GC-1807] Files missed by previous checkins

$ [GC-1807] Files missed by previous checkins

&

~
& Revise migration integration for Rails 5.2

70c72c9

1467716

ff5c569

810d908

8153767

352e758

Let’'s zoom into a single commit to see how GitClear’s rich commit parsing engine uses Diff
Delta to simplify even the most intricate commit activity

‘ e D

e When git tools like Github interpret a commit, they relate a list of green and red changes. Everything is binary.

File 1 File 2

Other diff viewers
classify
every code change
as either

or

| -DELETE

By treating every change as either an “add” or “delete,” other git tools put the onus on code reviewers to piece together
the real story. Is an apparent block of "added code" is truly new, or just some legacy code moved in from another

file?

Since 30% of all line changes are moved code, developers could be 30% faster understanding code by using a more
refined diff tool.

Commit
File 1 File 2
Meanwhile, GitClear .~ Delete " LICH DIFF PARSING
recognizes... _ DIFFERENTIATES
SUBSTANTIVE
DGR chances

By classifying code using the full set of code operations that developers recognize,
we can extract semantic meaning to differentiate between big vs trivial changes

Technical Details Optional In-Depth Reading

Operations Recognized by Diff Delta

10f3

Here are seven types of operations we recognize in commits. Each operation is accompanied by a screenshot of how

the operation looks in the GitClear diff viewer.

1. Addition

Addition with value reduced by its proximity to other
additions

+ 35 FIN uintl6 = 1 << iota
36 SYN is a TCP fla
37
38 RST is a TCP flag
39

Each added line of code counts for up to 10 points.

2. Deletion

This deletion is worth up to 10 points Lt

border-bottom: 1px solid $default-border-color;

Each deleted line of code can count for up to 25 points.
By default, Diff Delta prizes code deletion most of all, for its role in
reducing long-term tech debt.

Line 559 was line 762 before commit. Moved line IPTags: &[]nef
has no value

o to.StringPtr("tagl"),

Moved code (about 30% of all changed lines) is assigned no Diff Delta

Blank line removed (no value)

One of the most common types of code change is the "no-op." This
encompasses all changes to white space, blank lines added, and lines
whose only change was their line number.

Technical Details Optional In-Depth Reading

Operations Recognized by Diff Delta

5. Update

c.clusterilane, c.service

This updated line is worth up to 10 points

assert.Equal(t, owns, c.expected, + 511 B assert.Equal(t, c.expected, actual,

p "TestCase [%d] : %s",

"TestCase[%d]: %s", i, c.desc]

c.desc]

i,

When a line changes in part, we consider this an "update." Updates can count for up to 10 points.

6. Find & replace

Find/replace line worth minimal value

.-

it actual.IPTags != nil {

sort.Slice(xactual.IPTags, func(i, j int) bool {

When a developer applies the same change to several lines en masse, this is detected
as "Find & replace." Such lines are worth up to 3 points.

7. Copy/Paste

Copy/pasted line has no value

S Bl gl Unless required by applicable law or agreed to in writing, software
11 .\ distributed under the License is distributed on an "AS IS" BASIS,
12 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

pEN gl See the License for the specific language governing permissions and

14 f limitations under the License.

When a developer repeatedly adds ("pastes”) the same line or block in multiple locations,
across one or more commits. Copy/pasted code is assigned no Diff Delta for its role in creating
tech debt.

Technical Details Optional In-Depth Reading
Language Idioms Recognized by Diff Delta Jors

Assuming you're using one of the 40 programming languages (including every modern language), Diff Delta will know a few more tricks out of the
box. Below, a subset of language-specific idioms we recognize.

Added keywords have no value

+ 132 k
133 4

About 10% of lines changes are language keywords: these are
transparent to Diff Delta.

3. Multiline statements

Multi-line declaration, value assigned to first line Nnotations: wepat-inglstedng

+ 570 ServiceAnnotationIPTag
"tagl=tagvaluel",
571 ’

Multi-line statements have their value assigned to the first line

New commenting worth about a point

Comments are assigned negligible Diff Delta

Include statements have negligible value

+ 19 package tcpseqrst
20
pASN] import (
22 "bytes"

“Include statements” can comprise up to 5% of

changed lines in React repos. Diff Delta treats them

as trivial changes.

Commit

File 1

+10

~ — Delete ‘

+100 Diff Delta
Initial Estimate

+

File 2

+

+

+

— Delete

Once our commit parse is complete, we assign a
provisional score based on the estimated
cognitive energy needed to produce the changes
in the commit [1].

Scores range from 0-30 per line, with the highest
scores reserved for updates and deletions to
legacy code, where tech debt tends to
accumulate and only experts dare tread.

Changes like no-ops, moved code, and
copy/paste get no Diff Delta. Most non-trivial
changes get 5-10 per changed line. New code
earns little value since it is prone to churn and
begets maintainability costs.

[1] https://www.gitclear.com/diff_delta_factors

WORK
RENDERED
OBSOLETE

by
Commit EFGH

100
Diff Delta
=50 New Delta

Commit Group + EFGH
Commit Commit EFGH
File 1 File 1

.......................... @ -
N A S Op 7 A7 DT - . . . LT _
> 4 = 71 s
E— <
sE e = -

+ 20 Diff Delta

+ 50 Diff Delta

WORK
~_ RENDERED

“““ OBSOLETE

Y
Commit

30
Diff Delta
= 20 New Delta

Can Diff Delta be Trusted?

To evaluate whether Diff Delta could empirically outperform other common git
metrics, GitClear collected 2,800 data points to compare how well Diff Delta
correlated to “developer effort.” We found “Diff Delta” correlated up to 61% in large
repos with effort. Read what academics had to say about our research.

Pearson Correlation of Git Metrics (Repos with n>100 Issues)

B Diff Delta B Commi its Lines of Code Changed

At right, the blue bar indicates the degree
of correlation between Diff Delta and effort

spend by the development team. Diff Delta -
matches effort better than conventional -
metrics “commits” or “lines of code.” Q

0a6499bf (n=299) b6fc5e31(n=427) c3ea74b0 (n=178) d6041c05 (n=288) €211303d (n=655)

Repo identifier

https://www.gitclear.com/blog/a_researcher_s_take_on_our_research_i_am_of_the_opinion_that_you_have_clearly_demonstrated_line_impact_s_superiority

Commit Activity Browser: 2d Visual Map

GitClear rearranges the flat list of commits you’re used to into a colorful, 2d browsable map of commits
Commits are grouped by issue and condensed to hide irrelevant changes
Learn more about Commit Activity Browser

¥ master

Fix typo s/InvalidStatement/Statementinvalic/ [ci skip]

Merge pull request #40219 from elleencodes/ensure-connects_to-is-alwa

@ cilcencodes v k = Grand promotion WIP to translate current data
entry toolset to the /admin namespace,.

i) 84 (o

Ensure ‘connects_to can only be called on base or abstract classes -

@ cileencodes anc seejohnrun o
7 Implement fuzzy onset times. .. o
" & o
Revert "Merge pull request #1 from sikachu/silence-mysql-erro R . 5 ¢S #] AMPLENOTE1228 [2435 [.. @

@® omipoc
" " /> Add option durir t d Enterpris:
Mergae pull request #40212 from Shopify/active-record-exceptions-wrapping - o P o e TG

. kamipo © GC1772 4 332 B

Perform the next eBay category sync

BONANZLE16390 & 135 Bo © 0 See ‘. ° o ®o oo .0 oo oo
Block API token holder AKAs from
suspension ® oy °
19038 & ° .ﬂ az..@.'o ° 92 . o.
BONANZLE19038 & 514 ::::;. °° o @°®

ruby bundle caching
44 [

Build custom app o surface user
(-) information in Zendesk Support
T BONANZLE-19113 [423 [

https://www.gitclear.com/help/technical/commit_activity_browser_visual_usage_guide

File 1 File 1

What Happens by Fusing Commits + EFGH?

In the real world, commits don't happen in isolation.
Diff Delta is built to get more accurate as more
commits are added.

By fusing together related commits into Commit
Groups, we cancel out noise from churn and get
the ground truth about what precisely changed over
the course of an issue’s implementation.

Fusing commits into commit groups is key to
spotting bugs before they reach production.

..

Commits and EFGH Commit Group + EFGH
: : File 1

File 1 File 1
i 40% Less Code

to Review
de |

55

e i

o G >

File 2

File 2 File 2

Reduces
Value of
CHURN LINES

Without GitClear: With GitClear:
- Bugs are created and nobody knows about it % Code and Jira together from first commit
- Developers interrupted to get updates % Real-time developer status, no interruption

- Junior Developers repeat same mistakes % Team crafts more durable code together

Don’t Take Our Word for It...

Thousands of
startup and
enterprise teams
trust GitClear to
make sense of
their development
activity

Trusted By

nextiEyl

healthcare
One One Network
Enterprises™

HCSC

Health Care Service Corporation

Competitive Pricing for Every Size Team

Try GitClear free

Leading Developer Measurement & Code Review Tools

B> PLURALSIGHT

Product summary

"Ship faster because you

-++” GitClear

@ Pinpoint

M CODE CLIMATE

know

more. Not because your team's

rushing.”

"Next-level software developer

metrics powered by the best
code review tool."

"Streamline how you build
software. Focus on the things that
matter. Less tabs, more work."

"Actionable metrics for
engineering leaders. Turn data into
insights you can lead with."

3 developers monthly cost

$126

$27

$50

$112

10 developers monthly cost

$

416

$90

$100

$374

50 developers monthly cost

$2,

079

$450

$500

$1,871

100 developers monthly cost

$4,

158

$900

$1,000

$3,742

Price per dev/imonth (baseline)

$42

$9

$10

$37

Price per dev/month (enterprise)

$29

} =

(Too much to publish)

Last updated September 2020

https://www.gitclear.com/users/register

Bonus Content

Encore reports for overachievers

o gitclear gmmw bonanza ... ampleweb ... ample-editor ..., ample-mobile . ample-api guss ample-editor-app mmmm ample-notes-store . noteapps.info ~ ample-clipper
e Other
80,000

60,000

40,000

20,000

0
Sep 2019 Oct 2019 Dec 2019 Feb 2020 Apr 2020 Jun 2020 Aug 2020 Sep 2020

Historic stats show how temporal factors impact developer output

Historic Stats: Line Impact by Team

Bonanza Developers gmmmm Non-Bonanza developers Senior Developers

600,000

400,000

200,000

How are various teams at the company progressing on their tasks?

Issue Stats: How Much Work Comes From Jira?

wom NoIssue mmmm Task g Improvement New Feature g Story Unrecognized Ticket Type s Unknown Ticket Type

Sep 2019

Total Impact 44,2853 100%
No Issue 16,997 Bm 38%
Task 18,733 B 42%

0 ¢
Sep 2019 Improvement 7750 1% Feb 2020 Apr 2020 Jun 2020 Aug 2020 Sep 2020

Bug 1,440 B 3%
New Feature 3,738 m 8%

Story 2,603 [5%

All Biggest Is; View commits from this time period
Click the data point to make this popup stick

Issue stats make clear when bugs increase, or when the team is working on undocumented work

Your Team Has Experts, So Who Are They?

Committer Performance by Domain ® &

Domain Most Prolific Velocity Per Month Similar Contributors

A customer favorite, our Domain

Android insukkim L s redatani (782) Experts report uses git data to
ourly monthly § Ted Choc (12740) . . .
identify who in the company has
Alan Agius (1137 By . e
sogular ey LB LDy Ersentwe @ the most experience writing every
. type of code across your projects.
€3 Autogenerated @claudiahdz &’hsosu”y &mgmhlv 36 DX i .
Y g Guo Xiang Tan (0 fm)
, . 2728 Tom Lane 2491) These people can form the
a Gleb Smirnoff B hourly B monthly ArthurHeymans (3139 o)
interview team if you need to hire
@ vichael saweayn T 3::3(:;2%;, more_ expertls. They’re also prime
candidates if you need to mentor
= %5 Eladash (2294 () 0 o .
£ wan My Bl e, aspiring Junior Developers.

2 1521 anshulbehl (1211 By)
B hourly [monthly i Sumit Jaiswal (829)

Configuration & Roberto Carrillo

Actual developer data, aggregated across 20 of the largest
open source repos over past 12 months

