
Software effort estimates vs popular
developer productivity metrics: case
study of empirical correlation
WILLIAM BATES HARDING
Published February 2021
Last updated March 3, 2021

Abstract
A growing number of “developer productivity” tools1 seek to use git metrics like “Commit Count”
and “Lines of Code Changed” to help managers understand the work happening on their
development teams. Graphs of “Commit Count” and “Lines of Code” have become ubiquitous
across popular git hosts like GitHub, GitLab, and Bitbucket. It’s tempting for Managers to see
the graphs these providers offer and extrapolate judgement about the performance of their
developers, but little is known about the extent to which either metric correlates with “difficult
work completed,” or if they correlate at all2.

In this study, we use a large empirical dataset (n=2729) to report the correlation between a
software team’s effort estimation (i.e., “How difficult will it be to complete X task?”), compared to
three git-based software metrics: Commit Count, Lines of Code Changed, and Diff Delta. We
find that all three metrics have some level of Pearson correlation with the development team’s
difficulty estimation. The most correlative metric was Diff Delta, ranging from 26-63% in large
repos (n=100+ tasks) analyzed. The corresponding r2 observed for Diff Delta ranged from
7-38% in large repos.

A software metric that exhibits high correlation with effort estimation could facilitate novel
opportunities across software companies. For Product Managers, such a metric could reduce
busywork calculating “sprint velocity.” For CTOs, it could identify where tech debt accrues to a
repo, to intervene before it debilitates their project. For CEOs, it could inform long-term plans by
predicting how much work a particular team of developers will complete per time unit.

2 “Although the choice of these approximations is critical for the performance of the prediction models,
there is no empirical evidence on whether LOC is actually a good approximation.“ --Shihab et. al, Is Lines
of Code a Good Measure of Effort in Effort Aware Models

1Summary of five separate software metric analysis tools that have launched between 2016 and 2021:
https://www.gitclear.com/pluralsight_gitclear_pinpoint_code_climate_code_development_kpi_metric_alter
natives

https://www.sciencedirect.com/science/article/abs/pii/S0950584913001316
https://www.sciencedirect.com/science/article/abs/pii/S0950584913001316

Page 2

Analysis Method
The goal of this study is to evaluate the correlation between a team’s collective judgement of
how much effort will be needed to complete a task, compared to three available software
metrics derived from a team’s git commit history.

Story Points represent effort and difficulty
To represent a team’s collective judgement of effort estimation, this study uses Story Points,
extracted from Jira after being estimated by the team. As explained by Atlassian 3 in the
top-ranked Google result for “Story Point Estimation,”

“Story points are units of measure for expressing an estimate of the overall effort required
to fully implement a product backlog item or any other piece of work. Teams assign story
points relative to work complexity, the amount of work, and risk or uncertainty.”

Another of the top-three Google results for “Story Point Estimation,” from VisualParadigm.com4,
echoes Atlassian’s description:

“A story point is a metric used in agile project management and development to estimate
the difficulty of implementing a given user story, which is an abstract measure of effort
required to implement it. In simple terms, a story point is a number that tells the team about
the difficulty level of the story.”

These and other sources concur that teams assign story points by collectively judging the
overall effort required to complete a task.

Story Points are relative to the team
There is no single scale on which Story Points accrue. This is by design: as described by
Atlassian’s Story Points article5, “each team will estimate work on a slightly different scale, which
means their velocity (measured in points) will naturally be different. This, in turn, makes it
impossible to play politics using velocity as a weapon.”

This means that, while every team will assign a higher number of Story Points when a task is
perceived as “more difficult,” there isn’t expected to be a single constant c that could translate

5 https://www.atlassian.com/agile/project-management/estimation
4 https://www.visual-paradigm.com/scrum/what-is-story-point-in-agile/
3 https://www.atlassian.com/agile/project-management/estimation

Page 3

what “5 Story Points” represents for Team A vs Team B. Every team will have its own value of c,
based on who is choosing the Story Points. Thus, the correlation between Story Points and
code metrics must be evaluated on a per-project basis, where a consistent evaluation of Story
Points can occur.

By evaluating correlation on a per-project basis, the noise of differing c values is eliminated from
the final correlation analysis. To calculate the cumulative level of Pearson and r2 correlation, this
study uses a weighted average that combines the correlation value per project with the number
of data points supporting that correlation (i.e., the number of issues analyzed in the repo).

Data collection criteria
The dataset provided below is sourced from more than 2,500 issues across 61 different git
repos analyzed by GitClear6. The repos included were selected based exclusively on three
criteria:

1. Signed up for GitClear and connected their repo to a Jira instance
2. Opted in to sharing anonymized data in their GitClear settings
3. Had specified, or could heuristically have deduced, which column in the Jira integration

corresponded to Story Points

No further criteria were applied in selecting repos. The full set of data provided covers all 61
repos that meet these three criteria as of February 2021. In the Appendix, one can find the
source code that was used to generate the CSV file, which was then imported into the Google
Sheet. This source code shows that the data set provided is the full sample of repos in the
GitClear database that match the conditions above.

Since no filtering is applied to pre-select these repos, there is a high variance in the correlation
levels on a per-repo basis. This variance reflects expected differences in how random, real
world teams assign Story Points to their tasks. The high variance observed should contribute to
these findings being reproducible for future experiments, even with large, somewhat messy,
real-world datasets.

Source code used for analysis
The full source code used to generate the CSV data set can be found in the Appendix.

6 Source code analysis company providing this dataset free of charge for public use
https://www.gitclear.com

https://docs.google.com/spreadsheets/d/15evsxu8vhS0yfbvd7g62Kvsw7TmacG53QlZzPg3JJtI/edit?usp=sharing

Page 4

Purpose
A software team with high correlation between their effort estimation and a software metric could
enjoy decided advantages over competitors lacking such data.

Reduce time/busywork calculating “sprint velocity”
According to LucidChart’s popular article on Story Points7,

“You may at this point be wondering how many story points a team can complete during a
sprint. That amount is called sprint velocity, and unfortunately, there’s no way to determine
that until the first sprint has been completed.”

To the extent that a developer metric correlates with Story Points, the total Story Points
completed per sprint could be predicted by the measurement of that metric. Before a manager
chooses to move a developer to a new team, they could estimate how much of a difference that
move ought to make in the rate of backlog reduction for the team.

That is, if we manage a Developer named Bertrand who averages 5 commits per day, and we
find that 10 commits correlates strongly with completion of 1 Story Point, then we can estimate
that Bertrand should add 5 Story Points per 2-week sprint to the current output of the team. Of
course, the true cost of adding Bertrand is also influenced by other factors, such as project
assimilation costs for the new developer (i.e., understanding conventions and structure of the
new repo), and increased communication costs for the existing team.

Augment technical interviews
The current recruitment process for software developers bleeds efficiency at every turn.
Valuable Senior Developers, often including the CTO and VP of Engineering, are compelled to
interrupt their project work to participate in long, arduous technical interviews. According to

7 #2 Google result for “Story Point Estimation” as of February 2021
www.lucidchart.com/blog/how-to-estimate-agile-story-point

Page 5

Google research, the best interview techniques yield somewhere between zero8 and 29%9

predictive ability in identifying the most talented candidates. Recruiters have to be paid 15-25%
commissions per candidate referred. If a metric could be calculated locally on a developer’s
machine, analyzing the git repos they’ve previously contributed to, a team could hypothetically
approximate how many Story Points this prospective developer would complete per sprint. This
could be accomplished alongside a reduction to time spent by interviewer and interviewee on
unpopular tasks like whiteboarded code questions, take-home coding projects, and the like.
Which, again, still only yields 29% predictive confidence in the best case scenario10.

In a more efficient system, the benefits of being a productive developer could be readily
measured, and would ensure that developers with atypically high velocity were compensated
accordingly.

Proactive help for struggling team members
In order to know when developers are struggling, it’s common practice for Lead Developers to
“check in” with their team a few times per week. The periodic check-in is an inefficient way to
discover when a team member is struggling, given the “false positive” rate (the number of
developers checked in vs number who needed help) tends to be extremely high. Most
developers don’t need help most of the time, and asking them if they need help breaks up their
flow state, reducing progress11.

It would be more efficient if a Manager could proactively detect that a teammate was struggling
without needing to ask. A highly correlative git metric could let a Manager detect when their
developers are floundering as soon as its output starts to drop.

Inverting this idea, Managers could use a highly correlative metric to evaluate when their Story
Point estimates may have been poor. If their repo has higher variability in its Story Point
correlation than industry averages, the Manager could evaluate whether the issue estimation
process should be revised.

11 https://stackoverflow.blog/2018/09/10/developer-flow-state-and-its-impact-on-productivity/
10 Hire Like Google, Wired, 2015 original research by Schmidt and Hunter at link

9 “In 1998, Frank Schmidt and John Hunter published a meta-analysis of 85 years of research on how well
assessments predict performance... The best predictor of how someone will perform in a job is a work
sample test ([with r2 value of] 29 percent).” --Hire Like Google, Wired, 2015

8“Years ago, we did a study to determine whether anyone at Google is particularly good at hiring. We
looked at tens of thousands of interviews, and everyone who had done the interviews and what they
scored the candidate, and how that person ultimately performed in their job. We found zero relationship.
It’s a complete random mess” --Laszlo Bock, Laszlo Bock, senior vice president of people operations at
Google, New York Times, 2013

https://www.wired.com/2015/04/hire-like-google/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.172.1733&rep=rep1&type=pdf
https://www.wired.com/2015/04/hire-like-google/
https://www.nytimes.com/2013/06/20/business/in-head-hunting-big-data-may-not-be-such-a-big-deal.html?_r=1

Page 6

Detect how and where tech debt is created
If it’s possible to map task complexity to a software metric, then it also becomes possible to
identify what preceded the creation of complex code. That is, if a task estimated at a high value,
like 11 Story Points, ends up taking 10 days to modify 20 lines in Directory A, then we could say
that making changes in Directory A seemed to be very complex. Then we could look at the age
and quality of the code that comprises Directory A, and make informed decisions about whether
to take lessons that could help make future code more easily adapted.

Knowing which directories avail the lowest rate of Story Point completion helps a VP of
Engineering or CTO calculate when large-scale refactoring is justified. Particularly if Senior
Management can see that many upcoming features or bugs pertain to code located in a low
velocity directory, the team can accelerate Story Point completion by seeking to remediate what
makes the code in the directory slow/complex to adapt.

Long-term executive planning
Over a longer time period (e.g., a quarter, a year), a software metric with high Story Point
correlation could project how much is likely to get done by a team of developers. After the effort
for prospective tasks has been estimated, the Product Manager can use the conversion rate c to
translate Story Points to their software metric of choice. Then, a team can be constructed that
has a historical record of accumulating the software metric at a rate that should complete X
number of Story Points by Y date.

For example, if 100 commits reliably correlated with 10 Story Points completed, and a team
needs to maintain a cadence of 20 Story Points per week to reach its milestone, a Project
Manager could assemble a team of developers such that its members cumulatively average 200
commits/week. The Manager could then feel confident the team will hit their weekly Story Point
target, if the correlation between Story Points and Commit Count is high enough.

This informs how aggressive a CEO or Product Manager can be with their product roadmap,
while keeping touch with a ground truth measurement. A metric with high Story Point correlation
means the manager has instant feedback on whether future milestones are likely to remain on
track as the developers on the team swap in and out.

Limitations of Method
In this section, we review known limitations of this study’s design.

Page 7

Variability in effort estimation efforts
For high Story Point correlation to exist, a team’s leaders need to make consistently accurate
estimates of how much effort will be required to complete a task. The stakeholders choosing the
Sprint Points have to be “tuned in” to their project’s existing tech debt, and they need to avoid
letting politics influence the estimation.

If a team has limited information to make their effort assessment, their estimates will be more
random. This randomness sets an upper limit on how closely Story Points might correlate with
any software metric. The more the data set grows, the more randomness seeps in to drag down
correlation values.

There are limited tools available to assess the quality of the team’s estimation abilities, but the
source code in Exhibit A of the Appendix illustrates one countermeasure this study used to
control for atypical estimation: if all three of the developer metrics were negatively correlated
with a repo’s Story Points estimate, then we exclude that Repo’s data points from the data set.
As of February 2021, this requirement excluded less than 5% of all eligible repos.

“Lines of Code” correlation artificially boosted
The values of all three metrics are extracted from the GitClear database after having been
processed by the company’s “Commit Crunching engine” as described in the help
documentation12 for Diff Delta. In contrast to git stats generated from GitHub and conventional
git hosts, GitClear identifies files and patterns that do not reflect developer work being done,
and ignores the lines changed in these files. For example, every Ruby on Rails project contains
a “structure.sql” file that is auto-generated by the Rails library any time the database is
migrated. GitClear excludes this file from analysis, and so the lines of code that changed in that
file are not included in the “Lines of Code Changed” count, even though a more basic
interpretation (such as that afforded by all free git stat tools) would include these if “Lines of
Code Changed” per issue were examined. Read more about how Lines of Code Changed is
artificially increased in the Technical Details section of the Appendix.

Mapping commits to Story Points is non-trivial
The dataset may have some errors in how software metrics are associated with issues, and in
turn, how issues are associated with Story Points.

To connect commits with issues, GitClear looks at the git commit record, seeking a reference to
the task’s external identifier. All issue data in this dataset comes from Atlassian’s Jira, which
allows a Story Points field to be added to the inputs when creating a new issue (e.g., Task,
Story, To-Do item, Bug). To deduce how commits connect to tickets, data sources are analyzed

12 https://www.gitclear.com/line_impact_factors

https://www.gitclear.com/help
https://www.gitclear.com/help
https://www.gitclear.com/gallery_of_free_git_stats_screenshots_examples

Page 8

first by the content of their commit message, then by the content of their pull request title, and
finally, by the name of the branch they were developed in. If any of these data sources yields a
reference to a Jira ticket identifier, then the commit’s metrics are associated with the Jira ticket.

In rare cases, commits will reference multiple Jira tickets, or will reference a Jira ticket that
doesn’t correspond with what is referenced in the pull request title. In these cases, we assign
the commit’s work only to a single issue, as described by the method above.

High tech debt, low correlation
Sometimes a task is complex not because it modifies large amounts of code, but rather because
it is a small amount of unapproachable code that must be changed. Code that takes a
disproportionately long time to modify is said to be unadaptable, or “harboring tech debt.”

When code is well-documented, covered by tests, and separated into modules by concern, then
energy required to adapt that code tends to remain constant as time passes. However, in real
world projects, code is often authored under patchwork circumstances. This contributes to
disjointed code lacking comprehensive tests and documentation. When this happens, the code
becomes “complex,” and the team will correctly estimate that changing a small amount of such
code will take many Story Points, even though the measurable work to resolve the issue might
only span a few changed lines.

For repos with large patches of tech debt, the correlation between “effort spent” and measurable
developer output will be lower.

Page 9

Results
Of the three metrics, over n=2,791 repo issues and r=61 repos, Diff Delta correlated
most strongly with Story Points, establishing a Pearson correlation value of 38%. Commit Count
correlated at 27% and Lines of Code Changed at 25%.

Diff Delta also demonstrated the highest r2 correlation coefficient, with a 19% correlation
coefficient, compared to 11% for Commit Count and 9% for Lines of Code Changed.

Result data summary
Find the full set of 2,791 issues analyzed in this spreadsheet and the Per-Repo Correlation Data
in the Appendix. Here is the summary of across all repos analyzed:

Weighted average Large repos (100+ issues)
Pearson

correlation
r2

coefficient
Pearson

Min
Pearson

Max r2 min r2 max

Lines of Code
Changed 25.0% 8.5% 13.2% 31.4% 1.7% 9.9%

Commit Count 27.0% 11.5% 17.3% 49.4% 3.0% 24.4%

Diff Delta 38.3% 18.8% 25.9% 61.4% 6.7% 37.7%

The full analysis includes 61 distinct repos analyzed, and 2,729 data points. There were 5 repos
that qualified for the “Large Repo” data group, these repos included 1,847 data points between
them. As a reminder a “data point” is any issue that had Story Points assigned to it before being
marked as resolved, per the “Data Collection Criteria” section in “Analysis Method.”

For both correlation calculations, the maximum correlation for a repo with n=100 issues is
included as an indication for where the upper bound of correlation level might reside, given
minimally random Story Point designation.

https://docs.google.com/spreadsheets/d/15evsxu8vhS0yfbvd7g62Kvsw7TmacG53QlZzPg3JJtI/edit?usp=sharing

Page 10

Here are the Pearson correlations visualized:

Average software metric Pearson correlation with Story Points, and max correlation among
repos with at least 100 issues assigned Story Points

The Pearson correlation for the repos with n > 100

Page 11

And the graphed r2 correlation coefficients:

Average r2 correlation coefficient for dataset, and correlation coefficient in maximally correlated
repo with min n=100 issues having Story Points

Along with correlation in the repos with n > 100:

Page 12

Interpretation
These data indicate that Diff Delta more closely approximates a team’s estimation of effort than
Commit Count or Lines of Code Changed. The improvement of Diff Delta over these
conventional metrics ranges from +42% to +119%, with an average improvement of 70%13.

The finding that Lines of Code have the lowest correlation with effort assessment mirrors
previous results reported by Shihab, Kamei, Adams, Hassan14, that “using LOC under-estimates
the amount of effort required compared to our best effort predictor by approximately 66%.” In
spite of the metric’s shortcomings, in the highest correlation repo, e211303d, Lines of Code still
managed a correlation coefficient of 9.9%. This can presumably be attributed in part to the
“Lines of Code” Correlation Artificially Boosted” Limitation previously discussed.

In aggregate, Lines of Code Changed produced a fairly low 8.5% r2 value. This corresponds
with conventional wisdom that Lines of Code is a dangerous metric to base decisions upon1516.

Commit Count performed second best in predicting complexity assessment, with an r2 of 11.5%
in aggregate, and 24.4% in the e211303d repo, where the Story Point estimation methods most
closely paralleled observable code stats. Unfortunately, the utility of this correlation hinges on
the Developer writing commits under the belief that their commit volume is irrelevant. Once
they’re cognizant that they are being measured, the metric loses all predictive value since
Commit Count is the most trivial metric for developers to game17.

Diff Delta compiled a 38% Pearson correlation across the dataset, and a 18.8% r2 weighted
average. The largest repo in the dataset (n=655) suggests that a 38% r2 Is possible at scale.
The range of 19-38% suggests that evaluating a developer’s Diff Delta would yield comparable
predictive power as the most effective interview method available, the take-home project
(r2=29%).

Mechanism of Diff Delta correlation
Since Diff Delta correlates with effort more strongly than other metrics, it is worthwhile to
examine the mechanics used to calculate Diff Delta.

GitClear provides the following diagram on its Diff Delta explanation page18:

18 https://www.gitclear.com/line_impact_factors
17 https://www.gitclear.com/popular_software_engineering_metrics_and_how_they_are_gamed

16 “We asked a bunch of people why they hate the idea of measuring lines of code so much. The results
here varied quite a bit, with people saying ‘because people will just write lots of terrible code’ or ‘that’s a
very easy metric to game.’ All of these are true of course.”
https://www.pluralsight.com/blog/teams/lines-of-code-is-a-worthless-metric--except-when-it-isn-t-

15 https://www.gitclear.com/blog/the_4_worst_software_metrics_agitating_developers_in_2019
14 https://www.sciencedirect.com/science/article/abs/pii/S0950584913001316

13 Diff Delta vs Commit Count Pearson/r2: 42%, 63%; Diff Delta vs LoC Pearson/r2: 53%; 120%. Average
improvement: 69.5%

Page 13

Approximate weighting of factors that combine to calculate Diff Delta

The company does not publish the source code for its evaluation. In the GitClear article19

“Popular software engineering metrics, and how they’re gamed,” the company describes Diff
Delta as a metric designed to measure cognitive energy:

“Diff Delta is a metric designed to measure how much cognitive energy is being put into
software development. This video offers an illustrated explanation of how that's possible.

19 https://www.gitclear.com/popular_software_engineering_metrics_and_how_they_are_gamed

https://www.gitclear.com/line_impact_factors
https://www.gitclear.com/line_impact_factors
https://www.youtube.com/watch?v=AQdI74kyEMA

Page 14

The short explanation is that Diff Delta cancels out all of the interstitial activity ("churn") that
happens as a feature gets developed, leaving a concentrated embodiment of the work that
took place. Diff Delta is conserved across languages, so it takes a consistent amount of time
to generate Diff Delta whether the developer is writing Java, Python, Javascript, or any other
major programming language (30+ supported).”

“In terms of business value, Diff Delta parallels Story Points: it illustrates how the cost of a
task fluctuates depending on the developer to whom it is assigned. From this, an engaged
manager can use the Domain Experts report to match Jiras to subject matter experts, which
can dramatically accelerate product velocity.”

Since Diff Delta was designed to assess cognitive energy expended, its target approximates
Story Point effort estimation.

Developer metrics aren’t enough
A team must not rely solely on any particular developer metric as the “single source of truth” in
evaluating developer performance. Rather, developer performance is best thought of as the
combination of many factors: quantified metrics, collaborative spirit, domain expertise,
mentorship ability, and other factors. Just as no qualified manager would evaluate a developer
solely based on their Story Points completed in a year, neither would a manager be wise to
believe that any single metric will offer a full picture of the value created by a particular
contributor.

Follow-up Research
We hope that future researchers will review the GitClear dataset and suggest areas that would
be interesting to explore in follow-up studies. The more sources can reproduce our correlation
results, the more confident we can be that they apply across different development contexts
(e.g., startups, mid-sized companies, enterprise).

The biggest opportunity would be to increase the number of data points to more than 10,000.
We hope to produce such a study sometime in 2021 or 2022, and would be eager to collaborate
with researchers who have taken on work of this scale in the past.

An area that we remain especially interested to explore is the differences in individual
consistency from week-to-week, across each software metric and Story Points completed. It
seems reasonable to hypothesize that the number of Story Points completed from
week-to-week would have less variability than any software metric, since Story Points are
assumed to have the highest correlation with the amount of work to be done. Metrics whose

https://www.gitclear.com/screenshot_feature_tour#6._Who_are_the_domain_experts?

Page 15

weekly variability is lowest would hold promise to further enhance the accuracy with which
executives and Project Managers can approximate their project release schedule.

Finally, we would like to see follow-up research better separate the full “Lines of Code,” as
interpreted by raw git, from the advantaged “Lines of Code” known to GitClear. That is, if the
study simply used raw lines of code changed, as would be observed viewing GitHub Stats, it’s
presumed that the Line of Code correlation would fall appreciably. Since 30% of all Lines of
Code Changed are simply moved lines20, these would inflate the metric but have zero
correlation with complexity estimates.

20 Stats on the extent to which Lines of Code falls into different categories of noise:
https://www.gitclear.com/lines_of_code_stats

Page 16

Appendix

Technical Details

Limitations of Method: Lines of Code Follow-up
The correlation of the “Lines of Code Changed” metric in this study is expected to be inflated
over what might reproduce in subsequent analyses. A few file types whose lines of code are
automatically ignored by GitClear:

● Auto-generated files (e.g., yarn.lock, gemfile.lock, structure.sql)
● Minified Javascript files
● Any files whose extension does not correspond to a known programming language
● Other directories manually marked by customers as non-relevant (e.g., vendor and

library directories)

Furthermore, there are a few types of operations that GitClear recognizes and translates into
what is measured as a single “Line of Code Changed”:

● Find/replaced code
● Updated code
● Moved code

These three operations comprise more than 30% of all lines that change, so when git providers
treat these operations as two changed lines (as all but GitClear do), the correlation of “Lines of
Code Changed” and task complexity is likely reduced.

Per-Repo Correlation Data
Below you can find the 61 repos that were analyzed for Story Point correlation.

Pearson correlation
Here is the full set of Pearson correlation observed per-repo, with repos of n=100 or greater set
apart in bold since these data points are the most robust, and contribute most strongly to the
weighted average of the dataset:

Repo pearson
correlations Record count Diff Delta Commits

Lines of Code
Changed

04bffefd Pearson 6 -0.31937 0.17170 -0.40495

07a6a2fa Pearson 3 -0.21838 0.62361 -0.46038

097b4331 Pearson 12 0.52366 -0.12524 0.17671

https://www.gitclear.com/help/general/languages
https://www.gitclear.com/lines_of_code_stats

Page 17

0a6499bf Pearson 299 0.25889 0.25936 0.22203

0c492158 Pearson 26 0.22353 0.08266 0.05783

0f2aaf30 Pearson 12 0.23511 0.03633 0.16989

1353a4c4 Pearson 24 -0.02670 -0.12653 0.13393

17730c68 Pearson 8 0.07815 0.03939 0.14068

1d88ad13 Pearson 40 0.20626 -0.01764 -0.01458

2b682982 Pearson 11 0.80441 0.43239 0.80612

2cfcbf23 Pearson 27 0.37282 0.34018 0.33808

2fadc9df Pearson 16 0.36792 0.11054 0.29969

30a64ca0 Pearson 10 0.67743 0.38716 0.30210

3242485d Pearson 8 0.30877 0.35461 0.37715

3a218db3 Pearson 46 0.67413 0.47113 0.44695

3c8d9e25 Pearson 11 0.69774 0.84989 0.88054

3ed5dcff Pearson 44 -0.16362 0.04120 0.05688

472bc4dd Pearson 13 0.50252 0.72884 0.67365

4acd4acf Pearson 3 0.16559 0.15430 0.45343

4d69f0ac Pearson 22 0.24478 0.32123 0.19333

50315b0e Pearson 5 0.98115 0.99291 0.99940

50a0767b Pearson 48 0.16258 0.39594 0.11336

5a9ebe3c Pearson 4 0.87088 0.48507 0.93505

5ffac53b Pearson 19 0.19211 0.03199 -0.20661

606dfa8b Pearson 9 0.28914 -0.19414 0.07278

66779d5f Pearson 5 0.77292 0.68063 0.76713

674f7b2d Pearson 9 0.29326 0.38903 0.44908

72a585e3 Pearson 8 0.55238 0.28734 0.34115

752b1dd0 Pearson 30 0.22834 0.06030 0.21315

75305ee2 Pearson 10 0.26098 0.28385 0.27004

7e1f5915 Pearson 54 0.29643 -0.00168 0.18859

7e9398b4 Pearson 8 0.14901 0.11438 -0.04556

7ef3d268 Pearson 12 0.72787 0.40653 0.58152

80abc79a Pearson 3 0.45145 0.79259 0.49903

80c6eedd Pearson 4 -0.60806 -0.60612 0.81780

94aefe51 Pearson 15 0.34098 -0.06126 0.18911

9a7f05e0 Pearson 4 0.58738 -0.28521 0.23430

9b4ceb2f Pearson 3 0.75965 0.53444 0.63610

Page 18

a90b4fc9 Pearson 6 0.24625 -0.17252 0.21033

ab5f83c9 Pearson 4 0.38738 -0.22268 0.08689

acf55047 Pearson 20 0.59130 0.68691 0.51041

b5078827 Pearson 12 0.32632 0.36575 0.21961

b6d9794a Pearson 13 0.14214 0.20464 -0.01495

b6fc5e31 Pearson 427 0.26496 0.18533 0.29149

b7260273 Pearson 9 0.10923 -0.04017 -0.16144

bcc4da08 Pearson 5 0.27923 -0.33436 0.39991

c08ca054 Pearson 10 0.38398 -0.49646 0.14637

c3ea74b0 Pearson 178 0.38893 0.28997 0.15142

c4abd096 Pearson 12 0.49558 -0.08717 0.63537

c556a08a Pearson 48 0.11769 -0.17979 0.09130

caa66f10 Pearson 26 0.44615 0.13578 0.34608

cf472176 Pearson 17 0.47926 0.30832 0.40760

d231b61d Pearson 7 0.43732 0.49014 0.50620

d4005b42 Pearson 3 0.99911 0.99926 0.99946

d6041c05 Pearson 288 0.31479 0.17335 0.13219

da66efed Pearson 10 0.57730 0.40708 0.54254

e211303d Pearson 655 0.61370 0.49447 0.31414

e26c6647 Pearson 12 0.23264 -0.03143 0.10237

e492e34c Pearson 18 0.26888 0.01146 0.13832

e6dca229 Pearson 3 0.67109 0.59604 0.84543

efcc2179 Pearson 48 0.77561 0.32192 0.40781

fdddf728 Pearson 7 0.13692 0.01429 0.00809

Diff Delta
Commit
Count

Lines of
Code
Changed

Pearson Correlation
for Dataset (weighted
average) 0.3834 0.2702 0.2503
Max Correlation (min
n=100) 0.6137 0.4945 0.3141

Diff Delta vs Others 41.88% -29.52% -34.71%

Data points (n) 2729

Data points (repos) 61

Page 19

R2 correlation

Repo correlation
coefficients

Record
count Diff Delta Commit Count

Lines of Code
Changed

04bffefd R2 6 0.101998 0.029486 0.163987

07a6a2fa R2 3 0.047689 0.395161 0.211947

097b4331 R2 12 0.274220 0.015707 0.031227

0a6499bf R2 299 0.067022 0.067267 0.049298

0c492158 R2 26 0.049967 0.006833 0.003345

0f2aaf30 R2 12 0.055277 0.001320 0.028864

1353a4c4 R2 24 0.000713 0.016011 0.017936

17730c68 R2 8 0.006108 0.001552 0.019792

1d88ad13 R2 40 0.042542 0.000311 0.000213

2b682982 R2 11 0.647068 0.187133 0.649837

2cfcbf23 R2 27 0.138998 0.115722 0.114299

2fadc9df R2 16 0.135367 0.012277 0.089817

30a64ca0 R2 10 0.458907 0.150531 0.091267

3242485d R2 8 0.095338 0.125749 0.142243

3a218db3 R2 46 0.454449 0.222012 0.199769

3c8d9e25 R2 11 0.486838 0.723173 0.775347

3ed5dcff R2 44 0.026772 0.001697 0.003235

472bc4dd R2 13 0.252524 0.531215 0.453802

4acd4acf R2 3 0.027418 0.024194 0.205600

4d69f0ac R2 22 0.059919 0.103196 0.037375

50315b0e R2 5 0.962651 0.986845 0.998795

50a0767b R2 48 0.026431 0.156856 0.012850

5a9ebe3c R2 4 0.758439 0.235294 0.874317

5ffac53b R2 19 0.036905 0.001026 0.042687

606dfa8b R2 9 0.083601 0.037692 0.005296

66779d5f R2 5 0.597407 0.463300 0.588483

674f7b2d R2 9 0.086000 0.151405 0.201676

72a585e3 R2 8 0.305120 0.082824 0.116386

752b1dd0 R2 30 0.052137 0.003637 0.045435

Page 20

75305ee2 R2 10 0.068112 0.080601 0.072920

7e1f5915 R2 54 0.087871 0.000003 0.035564

7e9398b4 R2 8 0.022203 0.013083 0.002075

7ef3d268 R2 12 0.529788 0.165497 0.338162

80abc79a R2 3 0.203807 0.644737 0.249036

80c6eedd R2 4 0.369736 0.367385 0.668798

94aefe51 R2 15 0.116264 0.003762 0.035762

9a7f05e0 R2 4 0.345012 0.081342 0.054898

9b4ceb2f R2 3 0.577063 0.285637 0.404626

a90b4fc9 R2 6 0.060641 0.030488 0.044239

ab5f83c9 R2 4 0.150064 0.049587 0.007549

acf55047 R2 20 0.349633 0.471869 0.260519

b5078827 R2 12 0.106486 0.133994 0.048229

b6d9794a R2 13 0.020204 0.041883 0.000223

b6fc5e31 R2 427 0.070202 0.034347 0.084964

b7260273 R2 9 0.011932 0.001619 0.026062

bcc4da08 R2 5 0.077972 0.112252 0.159928

c08ca054 R2 10 0.147438 0.246985 0.021424

c3ea74b0 R2 178 0.151263 0.084084 0.022927

c4abd096 R2 12 0.245597 0.007600 0.403701

c556a08a R2 48 0.013850 0.032323 0.008336

caa66f10 R2 26 0.199054 0.018440 0.119772

cf472176 R2 17 0.229691 0.095125 0.166140

d231b61d R2 7 0.191249 0.240536 0.256241

d4005b42 R2 3 0.998215 0.998521 0.998912

d6041c05 R2 288 0.099095 0.030052 0.017473

da66efed R2 10 0.333276 0.165819 0.294354

e211303d R2 655 0.376630 0.244498 0.098682

e26c6647 R2 12 0.054123 0.000988 0.010479

e492e34c R2 18 0.072294 0.000131 0.019134

e6dca229 R2 3 0.450366 0.355263 0.714752

efcc2179 R2 48 0.601575 0.103636 0.166308

fdddf728 R2 7 0.018748 0.000204 0.000066

Diff Delta Commit Count
Lines of Code

Changed

Page 21

Correlation Coefficient
for Dataset (weighted
average) 0.1876 0.1147 0.0853

Max Correlation (min n=100) 0.3766 0.2445 0.0987

Diff Delta vs Others 63.53% -38.85% -54.54%

Data points 2729

Responsible transparency disclosure
Because GitClear has been publishing articles on the relationship between code output and
cognitive energy since 2018, this paper cites GitClear data and links throughout. As mentioned
in the Results section, the dataset is provided by GitClear, using anonymized git stats from
companies who opted into sharing industry data. The author of this paper, William Bates
Harding, uses the title “Programmer/CEO of Alloy.dev” to describe his work on LinkedIn.
Alloy.dev has a website available at https://alloy.dev, where GitClear is listed among the three
products that the company operates, along with Amplenote and Bonanza.com.

GitClear has had an open job posting to hire a professional researcher to analyze its data since
a blog post made three months ago, in November 2020. The paid research opportunity was
circulated via email among academic researchers prior to the job being posted on the GitClear
blog. Which is to say, prolonged efforts have been made to contract an existing Professional
Researcher on a paid study that leverages the GitClear dataset. Because GitClear has yet to
connect with such a Researcher as of February 2021, the team decided to publish this first
analysis of its own dataset. Assuming this paper sparks greater interest in software metrics, it’s
expected that follow-up research could be undertaken by additional third parties.

By publishing the source code that was used to generate this dataset, we believe the data
produced in this study will be reproducible by other parties that independently undertake an
evaluation using similar parameters. We will assist any such efforts to the extent we are able. If
this is a topic that is interesting to you, please reach out to the email address bill at gitclear.com
and we can talk about how to advance further research in the software metrics space.

The repo “e211303d” cited in the data corresponds to the source code for Bonanza.com, a repo
that is operated by Alloy.dev. Among the n=655 issues with Story Points for Bonanza, here is
the breakdown of when the tasks were estimated and worked on:

● 2017: 140 issues
● 2018: 302 issues
● 2019: 169 issues
● 2020: 71 issues
● 2021: 7 issues

https://alloy.dev
https://www.gitclear.com/blog/free_gitclear_memberships_to_help_us_study_how_to_make_dev_teams_happier

Page 22

Story Points were never altered after being initially chosen: once an estimate was made, it was
left as a record for future evaluation. Thus, this dataset is considered as valid as any other since
it was accumulated well in advance of the decision to undertake this research (save for some of
the 7 issues from 2021. The internal effort to collect and research this dataset began in January
2021).

It is reasonable conjecture that two factors may contribute to the high correlation levels
observed by the Bonanza repo:

1. Developers making Sprint Point estimates without input from external stakeholders.
While some like Atlassian recommend bringing in stakeholders across disciplines to
estimate Story Points, the presence of non-technical members participating in the “effort
analysis” process seems likely to reduce the extent to which a developer’s assessment
of the technical complexity is utilized as the final source of truth to determine Story
Points.

2. Since the Bonanza repo was the first repo analyzed by GitClear, it was vetted to ensure
that auto-generated/third-party directories and files were not included in its source code
analysis. These steps also ensure that no Lines of Code will be accumulated by
extraneous sources, so the correlation for Lines of Code Changed is higher than it would
be otherwise.

As GitClear is adopted by more teams, it’s expected that Bonanza’s correlation levels will be
eclipsed by other startup teams with low tech debt, that endeavor to choose Story Points based
solely on their technical complexity. Already, there are 12 small repos in the 61 repo dataset with
r2 levels higher than Bonanza’s 38%.

Full Source Code Used for Research
At this link, find the full data set showing correlation between Story Points and developer metrics
on a per-repo basis. The following Ruby source code was used to generate the CSV file:

Job to compile stats that establish r^2 between Diff Delta and Story Points
class GenerateStoryPointCorrelationCsv < ApplicationJob
MIN_RECORDS_PER_REPO = 20

INDIVIDUAL_CSV_COLUMN_ORDER = [
:repo_identifier,
:story_point,
:line_impact,
:commit_count,
:loc_changed,

]

AGGREGATE_CSV_COLUMN_ORDER = [
:entity_identifier,

https://www.atlassian.com/agile/project-management/estimation
https://docs.google.com/spreadsheets/d/15evsxu8vhS0yfbvd7g62Kvsw7TmacG53QlZzPg3JJtI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15evsxu8vhS0yfbvd7g62Kvsw7TmacG53QlZzPg3JJtI/edit?usp=sharing

Page 23

:repo_identifier,
:story_point,
:story_point_record_count,
:impact_per_issue,
:commit_per_issue,
:loc_per_issue,

]

def perform
now = Time.now
freshen_story_point_research_stats!

story_point_scope = StoryPointResearchStat.where("story_points >
0").joins(:repo_issue).

where("story_point_research_stats.line_impact > 0 AND
story_point_research_stats.commit_count > 0")

story_point_scope = story_point_scope.where(updated_at: 1.day.ago..Time.current)

generate_detailed_stats!(story_point_scope)
logger.info "Completed stat generation in #{ Time.now - now }"

end

def freshen_story_point_research_stats!
processed = 0
StoryPointResearchStat.joins(:repo_issue).find_each do |research_stat|
research_stat.populate_from_issue!(research_stat.repo_issue)
processed += 1
logger.info("Processed #{ processed } SPRS records, up to ##{ research_stat.id

}") if processed % 100 == 0
end

end

def generate_detailed_stats!(story_point_scope)
file_destination ||= "#{ Rails.root }/story_point_correlation.csv"
story_point_scope = story_point_scope.order(:repo_uniqueness_md5, :story_points)
impact_tuples, commit_tuples, loc_tuples, repo_rows, all_pearsons, all_r2s = [],

[], [], [], [], []

CSV.open(file_destination, "wb") do |csv|
csv << INDIVIDUAL_CSV_COLUMN_ORDER

story_point_records = story_point_scope.to_a
story_point_records.each_with_index do |research_stat, index|
next unless (repo_identity = research_stat.repo_uniqueness_md5)

impact_tuples << [research_stat.story_points, research_stat.line_impact]
commit_tuples << [research_stat.story_points, research_stat.commit_count]
loc_tuples << [research_stat.story_points, research_stat.lines_changed]

repo_rows << [
repo_identity, # :repo_identifier,

Page 24

research_stat.story_points, # :story_point,
research_stat.line_impact, # :line_impact
research_stat.commit_count, # :commit_count,
research_stat.lines_changed, # :loc_changed,

]

if repo_rows.present? && repo_identity != story_point_records[index +
1]&.repo_uniqueness_md5

impact_correlation, commit_correlation, loc_correlation =
MathUtility.pearson(impact_tuples), MathUtility.pearson(commit_tuples),

MathUtility.pearson(loc_tuples)

unless impact_correlation && commit_correlation && loc_correlation
logger.error "Got a missing correlation among [#{ impact_correlation }, #{

commit_correlation }, #{ loc_correlation }] while processing #{ repo_rows.inspect }"
next

end

if repo_rows.size > 2 && (impact_correlation > 0 || commit_correlation > 0 ||
loc_correlation > 0)

repo_rows.each do |csv_row|
csv << csv_row

end

pearsons = ["#{ repo_identity } Pearson", repo_rows.size,
impact_correlation,

commit_correlation, loc_correlation]
all_pearsons << pearsons
r2s = ["#{ repo_identity } R2", repo_rows.size,

MathUtility.r2(impact_tuples),
MathUtility.r2(commit_tuples), MathUtility.r2(loc_tuples)]

all_r2s << r2s
csv << [""]

end

impact_tuples, commit_tuples, loc_tuples, repo_rows = [], [], [], []
end

end

csv << [""]
csv << ["Repo pearson correlations", "Record count"]
all_pearsons.each do |pearson_row|
csv << pearson_row

end

csv << [""]
csv << [""]

csv << ["Repo correlation coefficients", "Record count"]
all_r2s.each do |r2_row|
csv << r2_row

end

csv << [""]
end

Page 25

end
end

The implementation references two methods in MathUtility. Here is the method used to calculate
Pearson correlation:

Pearson correlation, aka the "r" in "r^2". How closely do a dependent and
independent variable
correlate with one another?
def pearson(data_tuples)
return nil unless data_tuples.present?

sum_independent = data_tuples.map(&:first).sum
sum_dependent = data_tuples.map(&:last).sum

sum_independent_squares = data_tuples.map(&:first).sum { |x| x**2 }
sum_dependent_squares = data_tuples.map(&:last).sum { |y| y**2 }

products = data_tuples.inject([]) do |arr, (x, y)|
arr << x * y

end

Calculate Pearson score
numerator = products.sum - (sum_independent.to_f * sum_dependent /
data_tuples.size)
denominator = ((sum_independent_squares - (sum_independent**2) /
data_tuples.size) *

(sum_dependent_squares - (sum_dependent**2) / data_tuples.size))**0.5

return nil if denominator == 0
numerator / denominator
end

And here is the method used to calculate r^2 correlation:

def r2(data_tuples, logger: nil)
slope = MathUtility.regression_slope(data_tuples)
y_intercept = MathUtility.y_intercept(data_tuples, slope)
y_mean = data_tuples.map(&:last).mean

This is a useful graph to visualize what these two quantities represent
https://www.graphpad.com/guides/prism/8/curve-fitting/images/_bm36.png
sum_of_squared_error = data_tuples.sum(0) do |x, y|
((y_intercept + slope * x) - y) ** 2

end

Page 26

sum_of_squares = data_tuples.sum(0) do |_x, y|
(y_mean - y) ** 2

end

if logger
logger.info "Analyzed #{ data_tuples.size } data tuples, found y_intercept

#{ y_intercept }, slope #{ slope } and mean #{ y_mean }. Equates to
sum_of_squared_error #{ sum_of_squared_error } and sum_of_squares #{
sum_of_squares }"
end

1 - (sum_of_squared_error / sum_of_squares)
end

Additionally, the method makes use of a StoryPointResearchStat model from which the data is
drawn. Here is the database definition underlying that model:

Table name: story_point_research_stats
#
id :bigint not null, primary key
story_points :decimal(8, 1) not null
line_impact :integer not null
commit_count :integer not null
lines_changed :integer not null
entity_uniqueness_md5 :string(8) not null
created_at :datetime not null
updated_at :datetime not null
repo_uniqueness_md5 :string(8)

Here is the job that generates the data for that model:

class GenerateStoryPointResearchStat < ApplicationJob

def perform(entity)
if entity.settings.shares_industry_stats
issue_scope = RepoIssue.joins(:extra, :repo).where(repos: { entity_id: entity.id

}).left_joins(:research_stat).
where("repo_issue_extras.story_points > 0").where(story_point_research_stats: {

id: nil }).resolved.where("closed_at < ?", 3.days.ago)

if issue_scope.exists?
logger.info "Found story point research records to generate"
issue_scope.each do |repo_issue|
next unless repo_issue.commits.exists?
StoryPointResearchStat.generate_for_issue(repo_issue)
logger.info "Generated research stats for issue ##{ repo_issue.id }"

end
end

logger.info "Finished creating #{ issue_scope.count } StoryPointResearchStats"
else

Page 27

logger.error "Error: Entity ##{ entity.id } does not share industry stats"
end

end
end

It creates a StoryPointResearchStat record for any entity (i.e., company) that shares industry
stats, and has Jira issues (aka RepoIssue) that possess non-nil Story Points. Here is the class
definition for StoryPointResearchStat itself, which is referenced in the job above.

class StoryPointResearchStat < ApplicationRecord

def self.generate_for_issue(issue)
if (existing_stat = StoryPointResearchStat.where(repo_issue_id: issue.id).first)
existing_stat.populate_from_issue!(issue)

else
StoryPointResearchStat.new.populate_from_issue!(issue)

end
end

def populate_from_issue!(issue)
issue_impact = issue.commits.impacting.sum(:value)
self.commit_count = issue.commits.count
self.entity_uniqueness_md5 = issue.entity.extra.derive_uniqueness_md5
self.line_impact = issue_impact
self.lines_changed = CodeLine.changed.where(commit_id:

issue.commits.select(:id)).count
self.repo_issue_id = issue.id
self.story_points = issue.story_points
self.repo_uniqueness_md5 = issue.repo.extra.derive_uniqueness_md5
self.updated_at = Time.current # Ensure we update timestamp even if no value

changed

if story_points
save!

else
destroy

end
end

end

We welcome suggestions to improve the design of any of this source code, or this study as a
whole. We intend to sponsor future analyses of the dataset as it grows.

